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Development of Next -Gen RTG

Å The development of Next-Gen RTG requires effective multi-physics 

numerical modelling of various TEG configurations.

Å Thermal-electric-mechanical coupled modeling required to accurately 

predict module performance under all operational conditions during the 

lifetime of the generator.
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Fully -Coupled Thermal -Electric -
Mechanical Coupled Modeling
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Å To accomplish this, a robust, iterative numerical scheme was 
developed using ANSYS 

Å A fully -coupled thermal-electric solver was developed in ANSYS CFX 
that models all pertinent thermoelectric phenomena:

ï Peltier, Joule, Thomson and Bridgman heats, 

ï Temperature-dependent material properties ïthermal conductance and 
electrical resistivity handled via Boussinesqapproximation

ï Evolution of current density and electric potential via EM package

ï Fully -implicit solver with electrical boundary conditions evolving with solution

ï Validated to ANSYS Fluent/Thermalelectric and JPL analytics

Å The results of this model served as the basis for ANSYS Mechanical

Å The multi -step algorithm is as follows:
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Geometry Generation
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Å A TEG geometry is constructed in 
Workbench DesignModeler using 
parameterized construction points 
(black dots), allowing for automatic 
reconstruction
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ÅGeometry sent to CFX to 
determine thermal -electric 
performance

Å Temperature distribution serves 
as basis of calculating 
deformation via thermal 
expansion as calculated via 
temperature-dependent CTE 



Å Domains are re-meshed and reimported into CFX; boundary 
conditions are automatically applied

Mapping to Mechanical

Å The thermal data from CFX is passed into ANSYS Mechanical using 
one-way FSI
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Construction 
Points

Å In order to capture the 
deformation, locations of 
construction points are 
captured for regenerating the 
model

Å After a solution is obtained in 
Mechanical, the geometry is 
redefined deformation
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Measuring Stress

Å Stresses in the N and P legs are 
measured as the trimmed-average 
maximum principal stress along the 
path

Å Path is located 50 [Ⱨm] from the hot 
side interconnector through the center 
of the leg
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Coupling Model
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Å To accomplish this coupling, a system 
of Workbench and Mechanical macros 
are used

Å The Workbench macro adds additional 
analysis cells

Å The Mechanical macro adds imported 
temperatures as load-steps

Å Point locations are written to a log file 
by the macro

Å Convergence is determined using a 
point movement threshold

1
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Solution Methodology
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One 
Iteration



Unsegmented Single -Couple

Å Algorithm prototyped and demonstrated on a generic unsegmented 
single-couple:
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P-type material: 14-1-11 Zintl

- 5x5x10 [mm]

N-type material: n-La 3-xTe4

- 5x5x10 [mm]

Metal Interconnect

- 1x5x10 [mm]



Mechanical Grid Independence
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ÅGrid Independence run with one -iteration unsegmented single-
couple:

Å Note: for global energy imbalances to be sub-1% for 
thermoelectric phenomena, 40 [‘m] required

Element 
Size [mm]

Arch 
Deformation 

[mm]

% 
Diff

N Leg Stress 
[MPa]

% 
Diff

P Leg Stress 
[MPa]

% 
Diff

1 0.0560 - 17.7847 - 21.0684 -
0.5 0.0554 0.966 17.3772 2.291 19.4508 7.678
0.25 0.0552 0.378 17.5606 1.056 19.5687 0.606
0.125 0.0552 0.063 17.5972 0.209 19.5496 0.097
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Results ïUnsegmented

Å Fixing the hot -side interconnector increases the maximum 
stress experienced
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Results ïUnsegmented

Å The fixed case experiences a less uniform stress distribution 
along the path
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Results ïUnsegmented

Å Stresses per constraint appear relatively uniform 
on the surface of the legs, especially as 
temperature difference increases

Å Maximum stresses occur within the volume of 
the legs, as measured by the path
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Results ïUnsegmented

Å Thermoelectric performance relatively unchanged due to 
deformation (recall Boussinesq)

Å Relatively large deformation in unrestrained systems 
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Segmented Single -Couple

P-hot material: 14-1-11 Zintl

P-cold material: p-SKD

N-hot material: n-La 3-xTe4

N-cold material: n-SKD

Metal Interconnectors

Electrical Load Resistance: 2 [m ǹ]

Mechanical Convergence Criteria: 
10 [Ⱨm]
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Å Analyzed potential Next-Gen segmented single couple under free-
floating, spring -loaded, and constrained system configurations
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Results ïSegmented

Å Stress magnitudes near-linearly increasing with fixed and free 
supports, due to lack of compliance in hot-side interconnector

16
2020 Conference on Advanced Power 

Systems for Deep Space Exploration



Results ïSegmented

Å Similar distributions to that of the unsegmented model
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Results ïSegmented

Å Stresses per constraint appear relatively uniform 
on the surface of the legs

Å Maximum stresses occur within the volume of 
the legs, as measured by the path
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Results ïSegmented

Å As seen with unsegmented device, relatively no change of 
thermoelectric performance due to deformation of couple

Å Near-linear trend in upward deformation with increasing ɝT
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Comparison with Single Iteration

Å Unsegmented Single -Couple (800 [K], Free)

ï Portion of height increase captured in first iteration: 100%

ï Current portion: 99.12%

ï Number of iterations to reach convergence: 3

Å Segmented Single -Couple (800 [K], Free)

ï Portion of height increase captured in first iteration: 100%

ï Current portion: 98.99%

ï Number of mechanical iterations to reach convergence: 3
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1. Developed a robust, rapid Workbench multi -physics-coupled 
model to evaluate inter-related thermoelectric and thermal -
mechanical behavior of Next-Gen designs

2. Mechanical deformation plays small role on thermoelectric -
performance of couple

3. Areas of high-stress exist at hot-side interconnectors, suggesting 
necessity for compliant structures

ᴼFuture work: 

Å Add additional construction points along legs and hot -side 
interconnector to capture non -linearity

Å Build multi -couple remeshing models

Conclusions
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